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LIQUID CRYSTALS, 1988, VOL. 3, No. 10, 1327-1338 

Formation of two-dimensional incommensurate structures in the system 
of Williams domains 

by E. D. BELOTSKII, N. G. MIGRANOV and P. M. TOMCHUK 
Institute of Physics, Ukrainian S.S.R. Academy of Sciences, Prospect Nauki 46, 

Kiev 28, U.S.S.R. 

(Received I1 December 1987; accepted 15 May 1988) 

The formation of incommensurate structures and their breakdown in the 
system of domains is shown with the help of a generalized thermodynamic poten- 
tial describing Williams domains in nematic liquid crystals above the electrohydro- 
dynamic instability threshold. 

1. Introduction 
On the application of an external electric field, the appearance of stationary 

non-equilibrium dissipative structures is possible in a nematic liquid crystal. An 
example of this fact may be Williams domains, a system of rotating hydrodynamic 
shafts which result in a liquid-crystalline film because of an electrohydrodynamic 
instability. The behaviour of the system in the electrohydrodynamic instability mode 
is essentially non-linear, and to describe this system various perturbation theories 
have been developed, which allow us to describe various aspects of this phenomenon 
not only qualitatively but to a considerable extent also quantitatively. 

However the liquid crystal, being a non-linear, anisotropic medium, appears to be 
sufficiently rich in physical phenomena many of which are far from having been 
explained. Particularly, in the recently published experimental study [ 11, a two- 
dimensional pattern of distortion of electrohydrodynamic-rolls was observed, whose 
appearance, in the first view, contradicts the symmetry of an initial system. As we shall 
demonstrate, the appearance of structures having such symmetry becomes possible in 
the presence of an external electric field. Since there is no hope to solve precisely a 
complete set of non-linear differential equations in partial derivatives which describe 
the behaviour of a liquid crystal under various conditions, then success depends to a 
great extent on a good ‘coarsening’ of the initial system. 

In the present study an approach is developed, based on the changeover from the 
initial set of differential equations to the so-called generalized thermodynamic poten- 
tial whose minimum is realized in the most probable dissipative structures. A similar 
approach has been utilized previously in the hydrodynamics of isotropic liquids, in the 
Benard problem [2]. 

By applying this approach developed in [3], in which the variables introduced by 
the authors of the present paper act as the order parameter, it has become possible 
to find new spatially-periodic structures in the system of electrohydrodynamic shafts. 
Thus, the experimental observation described in [ 11 obtains a natural explanation 
within the framework of this approach. 
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1328 E. D. Belotskii et al. 

2. Generalized thermodynamic potential 
In this section we shall describe briefly the scheme used to obtain the functional 

[3]. As a starting point, we shall take the set of equations which describe a liquid 
crystal in the hydrodyamic approximation [3], namely 

dIz 
dt 

J - =  n x h - I ' ,  

QdV/dt = f x g, 

div D = 4nq, 

dqldt + div j = 0, 

rot E = 0. 

Here, J is the moment of inertia per unit volume for the nematic, Iz is the angular 
speed of the director n, f and g are forces caused by the maxwellian stress tensor and 
the liquid crystal stress tensor, respectively, h is the molecular field, I' is the moment 
of the forces, V is the liquid crystal hydrodynamic velocity, q is the charge density, 
j is the current density and e is the liquid crystal density. Let us assume a film of 
nematic liquid crystal having a thickness 1 is placed in the XOY plane; normal to this 
plane (along the 02 axis), an external electric field is applied, having in intensity E,. 
For the purpose of definiteness, we shall consider that in an unperturbed state, the 
director is aligned (due to the orienting effect of the glass surface) along the OX axis. 
It is known from experiment that with a certain threshold value of the electric field, 
the liquid crystal loses its mechanical equilibrium, i.e. the electrohydrodynamic 
instability is developed. Our aim is to describe the phenomena occurring near (but 
above) the instability threshold. 

In the investigation of the set of equations (I), it is convenient to introduce the 
vector 

u = (v, n, E) (2) 
and to write the system in the symbolic form 

€[u] = 0 (3) 
The matrix form of the differential operator is found directly from the comparison 
between equations (1) and (3), taking into account (2). In the course of finding a 
solution to equation (3) near the threshold, we shall make use of perturbation theory, 
having taken the solution to the linearized set (1) 

t,[U,] = 0 (4) 

u,(t) = u,exp(-At), ( 5 )  

as an initial one. The solution to the linearized set 

is easily found in complete analogy with [2]. In so doing, it turns out that among the 
damped modes there appears a mode having the eigenvalue 

A, = -&As ,  (6)  
Here, As is the eigenvalue in the absence of the external field, E,, and 

R - R, 
E E -  

Rc 
(7) 
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Formation of Williams domains 1329 

where a, is the coefficient of 'viscosity. We can see that the eigenvalue of this mode, 
with E, -, E,, tends to zero, which corresponds to the appearance of the electro- 
hydrodynamic instability. We shall develop the perturbation theory by taking the 
magnitude E as a small parameter. 

The simplest version of such theory would consist of the expansion of the kind 

U(t) = u,(t) + E U l ( t )  + & 2 U 2 ( t )  + . ' . .  
Another version of the perturbation theory could however be developed, by taking 
into account the fact that a variation of R by a magnitude ER changes (as already 
follows from the analysis of the linear theory) the corresponding sizes of typical 
fluctuations along the OX axis by a factor I /&,  along the OY axis, by I /  JE, and in 
terms of time, by a factor 1/e2. Then following [2], it is expedient to introduce formally 
additional variables 

(8) 

and to carry out the substitution 

a, -, a, + E a t ,  a, + a, + &a,,, a, -, E Z a , .  (9) 

+ &el + &3/2E3,2 + E X 2  + . ' . 
Then, having represented the operator E in the series 

e = E, + (10) 

and, similarly, the vector ~ ( t )  and, by equating to zero the terms at identical powers 
of E ,  we shall obtain an improved version of the perturbation theory. 

The solution to the non-linear system will be sought in the form 

u = wu, + w*u,*. (1 1) 

The representation of the solution in a predetermined form, taking into account the 
procedure for its generation, is equivalent to the widely utilized method of shortened 
equations in the problems of non-linear optics. As accepted in hydrodynamics prob- 
lems (when studying instability), we shall obtain an equation for the amplitude W 
which also accounts for, apart from non-linear terms, random noise (thermal fluc- 
tuations). By restricting to the lowest non-linearity in terms of the amplitude W, the 
iteration procedure can be cut off (with E )  at c 3 .  Then the Langevin type equation for 
the amplitude W will take the form 

c,a,w = [c,(R- R , ) - c ~ ~ ~ ~ ] w + c ~ ~ ~ w - ~ c ~ ~ ~ ~ ~ w -  c5a;w+2y(<,V,z).  
(12) 

Here, the dimensionless coefficients Ci are expressed through the nematic parameters 
and have a cumbersome form (see [3]). The term y in equation (12) describes random 
forces whose correlator can be found in a standard way. 

From equation (12) it is possible, in the known manner (see [2]), to change over to 
the Fokker-Planck equation for the probability density of distribution of amplitudes 
W, W * ,  and from the latter, by following [2], it is possible to reconstruct the 
appearance of the functional which we are interested in; this describes in the predeter- 
mined approximation the nematic liquid crystal properties near (but above) the 
threshold of the electrohydrodynamic instability. The functional, written in the initial 
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1330 E. D. Belotskii et al. 

variables x, y ,  z ,  t ,  has the form 

+ ic,(a,wa;w* - a,w*a;w) + C,ia~wi’], (13) 
where we take into account the fact that, according to [3], C, is a (C, - k,) pseudo- 
scalar quantity. Consequently, the functional is invariant with respect to the sub- 
stitution of X for - X and k, for - k,. 

Calculations performed in [3] for the case of 4-methoxybenzylidene-4-butylaniline 
(MBBA) demonstrate that numerical values of the coefficients for the two first terms 
in equation (13) are much greater than those of the remaining terms (containing 
derivatives). This observation allows to consider in the long wavelength approxi- 
mation the spatial change occurs without a change of the module (see e.g. the principle 
of module conservation in [4]). In view of this, the following substitution is expedient: 

(14) 

w = Iwl exp(icp), 

W* = IW,exp(-icp), 

IWol % const., 

where k, is the wavevector of the initial system of rolls which is modulated along the 
OX axis. This substitution leads the functional (13) to assume the form: 

AF = k;lw,12 jJdxdy[c3(a,x)2 + 2k,c,(a,~)(a,~)2 + c,(k;(aYx)4 + (a;~)’)]. 

(16) 
In such a form, the functional (16) coincides with respect of its form with the 
contribution of elastic deformations to the free energy of a smectic A liquid crystal 
in the case where the dependence of the elastic deformations of the Z variable is not 
taken into account. 

Ln the general case, in the functional under consideration, a term of the form 
c6(a,X)’ should be present, which describes the anisotropy of the energy of rolls. A 
corresponding addition to the value of free energy will appear in the case of a 
transition from the three-dimensional functional to that for the quasi-two-dimensonal 
by averaging the functional over the plate thickness, taking into account the hard 
boundary conditions for the director. Given this the generalised thermodynamic 
potential of the system can be finally written as 

AF = k;lw,l2 jjdrdy[c,(a,x)2 + 2k,c,(a,~)(a,~)2 

+ c , ( k ; ( a , ~ ) ~  + (a;x)’) + C,(~,X)~]. (17) 

3. Incommensurate structures 
The presence of the generalized thermodynamic potential term in the C, coefficient 

may result in additional features in the behaviour of the roll system. In particular, 
there is a significant possibility of a helical torsion of the rolls. There then arises the 
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Formation of Williams domains 1331 

question of the possibility of observing this phenomenon. In the recently published 
paper [ 11, this effect was experimentally observed. 

In the present study, a standard scheme has been utilized for obtaining the 
Williams domains, this scheme has a slight modification which consists in that to one 
of the plates an additional voltage is applied, spatially modulated in the Oxdirection, 
which exceeds the main voltage by 0.6 V. We have observed a deformation in a system 
of rolls, whose interpretation we propose to carry out with the use of a functional 
which had been obtained for the purpose of describing the Benard effect in an 
isotropic liquid. At the same time, it is recognized that the question of explaining the 
formation of the observed structures remains unsolved. As we can see from figure 3 
in [ 13, the deformed system has changed from one-dimension to two-dimensions, this 
fact cannot be explained within the framework of the proposed functional. For the 
purpose of an adequate description of the experimental situation with the use of the 
generalized thermodynamic potential obtained, one more term should be taken into 
account, which appears because of the application of an additional periodic voltage 
to the plate. The form of this term can be obtained in the following way. 

Application, apart from a constant field, of a weak periodic electric field, should, 
generally speaking, be obtained anew. Accounting for the influence of this spatially- 
periodic field can however be carried out within the framework of the functional 
obtained. Actually, since the period of the applied field is of the same order of the 
period of repetition of the rolls and is much less than a typical size of an inhomo- 
geneity, which can be described by our functional (the system of rolls in a continual 
approximation), only the long wavelength contribution will be substantial. Such a 
contribution results because of interference which is associated with the closeness, 
rather than the coincidence of the periods of the applied external and modulated 
self-coordinated internal electric fields. Such a method of accounting for the contri- 
bution of interference to the long wavelength part of the permittivity is well-known 
from the theory of solids (see, e.g., [5 ] ) .  

The most substantial contribution of the electric field to the functional (13) is 
contained in the R term (since R - Ef , where E, is the component of the electric field 
along the OZ axis). The intensity E, can be presented as a sum of the three terms: 

E, = Eo + Ei,cos(kox + cp(x)) + AEcos(k,x), (18) 
where Eo is the external electric field, AE is the spatially modulated additional field, 
E,, is the self-coordinated internal field which arises in the nematic through the 
redistribution of charges; moreover, k,, is the wavevector which characterizes an initial 
(prior to the application of A E )  distribution of rolls, k,  is the wavevector of an applied 
modulated addition, and finally cp(x) is a certain phase which is to be determined (this 
is slowly changing at  a distance of the order k; ' ) .  

In the experimental study, the external-field potential, V is 6 V, the amplitude of 
the modulating addition, A V is 0.6 V, 

271 271 271 
200 168 ' 232 

k, = -pm, - Q k  <-, 

In this range of parameters, a two-dimensional pattern of rolls has been observed. In 
the case where k, was outside this range, the one-dimensional system of rolls was 
realized. 

As we have been noted, only long wavelength components would be legitimate to 
be left in the functional (13), which is achieved by averaging this functional according 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
5
5
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



1332 E. D. Belotskii et al. 

to one of the (27c/k0 or 27c/k,) periods. It follows, however, from the form of this 
functional that only the terms containing E, is averaged. The result of this averag- 
ing depends essentially on the ratio of periods, k, /k , .  In the experiment [l], 
-0.16 < (ko - kl) / (kl)  < 0.16. 

Let us write EZ in the form 

EZ = Ei + E;COS[(~, - k,)X + cp(x)] + . . . (19) 

Here, the points indicate terms which vanish on averaging. In so doing, we have made 
use of the identity 

~ C O S ( ~ , X  + c ~ ( x ) )  * C O S ~ , X  = COS[(~, - k , ) ~  + c~(x)] 

+ cos[(ko + k,)x + d X ) l  

and have omitted the second term which does not permit a contribution to the long 
wavelength asymptotes. 

Now we must only carry out practical averaging of the last term in equation (13). 
In this connection, we shall pay attention to the interesting peculiarities of a structure 
which was observed in [l]. In the experiment, the k, wavevector was changing (with 
fixed k , )  within the range 

1 k, 3 
2 kl  2 
- < - < - .  

These peculiarities consist of the fact that the two-dimensional structures were observed 
over the whole band of variation of the wavevector, k,, except the &neighborhood 
(S z 0+16k,) of ratios between the periods 

ko 1 ko - 3 - -  - -  - -  
k ,  2 '  2'  

We shall now consider in more detail the behaviour of the system near these ratios, 

Let us assume k, = k,  + A,, where A, is a small desynchronization of the phases. 
In this case, taking this into account with the relationship (19), our functional takes 
the form: 

kolk , .  

x cos(A,x - cp(x)) + C,(W(' + C31a,lW12 + iC4 

(a, wa:, w* - a, w*a; w) + c51a;w12 + c,p, w12]. (20) 

In this expression we have expressed the internal field, E,,, through the modulus of 
the order parameter, I Wol, in accord with the relationship (see [3]): 

Ein = IKIPEo (21) 

where p is determined by the nematic parameters. 
Estimates carried out in [3] for the MBBA case have demonstrated that numerical 

values of coefficients CI and C, are much greater than the remaining coefficients of the 
gradient terms. This circumstance allows to consider that in the long wavelength 
approximation, the spatial change of W takes place without module variation (see, 
e.g., the principle of module conservation [4]), and to look for a solution which 
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Formation of Williams domains 1333 

realizes the extremum of the functional in equation (20) of the form 

As a result of the Euler equation for the functional (20), we can write: 

Ba,Y + 2asinY COSY = 0. (23) 

Here, for the purpose of convenience for further comparisons with the study [6] ,  the 
following notations are introduced 

Y = ~ p ( ~ ) / 2 ,  B = 8C3 &2, u = CIr, WtAE/Eo (24) 

The first integral of equation (23) is easily found: 

(25) ~ ( a , ~ ) ~ / 2  + usin2Y = const. = - 
K2 

In contrast to [6], the parameter IC introduced contains the parameter k; which has not 
yet been determined. The value of Y and consequently the period of a structure along 
the OX axis can easily be found from equation (25). 

U 

I, = ~ I c K ( I C ) ( B / ~ U ) “ ~ ,  (26) 

where K(K)  is the complete elliptic integral of the first kind. 
The functional (20), referred to unit area in the notation of equation (24), to an 
approximation to constant values containing no variables, will take the form 

where 

denoting b, = 8AoC3 &’, we shall write b = bo + 4C4 W:k:. 
The value of the functional (27) on the extreme of equation (23) is 

Here, E(K) is the complete elliptic integral of the second kind. 

condition of the minimum of equation (29) 
Parameters K and k:, which are still unknown, should be determined from the 

9’ = - ( 2  nc4  W ~ ( ~ U / B ) ” ~ ) / I C K ( I C )  + 2 c 5  W,k; + c6 w; = 0, (30) 

9; = - ~ u E ~ ( I c ) / I c ~ ( ~  - $)K2(x )  + (4nC4W,k; + b,) 

k: 

x ((2a/B)Ii2. E ( K ) ) / ~ I c ~ ( ~  - IC’)K’(IC) = 0. (31) 

By substituting values of k; from equations (30) to (31), we obtain an equation which 
determines the IC parameter 

(32) 
E(J4 4nC4 w: n -- 

K 2J(2uB) 
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1334 E. D. Belotskii et al. 

The conditions for the fact that the functional (29) at the extreme point takes the 
minimum value 

2F; 2 0, L%$ 2 0, 9; * gG - 9;;; 2 0 

are reduced in our case to the following relationship: 

K3(rc)(l - rc2)/E(Ic) 2 2n2C42 W:/BC5. (33) 

Here, K is the radical of equation (32). If the combination of parameters, included into 
the right hand side of the inequality (33), is determined from equation (32), then 
instead of equation (33) we can write 

Since the left hand side is smaller or equal to zero, the condition of existence of the 
minimum of the functional (29) takes the form: 

Hence it can be seen that with other than zero value of the C6 coefficient which 
characterizes the energy of roll anisotropy, a certain mismatching of phases is 
required for the appearance of two-dimensional structures 

A0 2 71c4c6/4c3 Cs. (36) 

Since, however, we know nothing about the possible value of the coefficient c6, it is 
difficult to say whether the observed peculiarity would be noted experimentally. 

We now demonstrate that the process of forming the two-dimensional structures 
has a threshold character by a, i.e., by an applied modulated electric field. Really, the 
prerequisite for the formation of two-dimensional structures consists in the presence 
of such solutions to equation (32), with which 

k: 2 0. 

Therefore, let us first determine the value a = a0, with which the condition k: = 0 
is compatible with equation (32). Then it follows from equation (32) 

- -  E ( K 0 )  - b0 71 = “J(&). 
KO 2J(2a0B)’ ~K,K(K,) 4C4 

Hence, excluding a,, we obtain the equation 

WO)E@O) = 

This equation always has a solution with 

which determines K~ 

(37) 

It can easily be seen that the criterion (39) is compatible with (36) if C,‘ 2 C,C,. 
Estimates for MBBA demonstrate [3] that the latter inequality is satisfied with a great 
margin. Substitution of the value of K , ,  found from the solution (38), into one of 
equations (37), will determine the critical value of a,. 
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Formation of Williams domains 1335 

Now let us find the form of 6 near the threshold (a,, K,) 

The dependence of K on a is determined by equation (32). Using this equation, we 
obtain after some transformations: 

1 ??(K) E’(K) - (1 - .2)K(.) - 1 da 
2a dK 
-- - 

.(I - JC’) Lm - E(K)K(K) - 2n’C4 %’/BC, 

Substitution of this relationship into equation (40), accounting for equations (37) and 
(32), permits the representation of $ as 

where 

Due to the condition (34), the parameter A > 0. 
In [5] a situation is considered where the coefficient C, is equal to zero; for this 

case, no threshold in a appeared. At the same time, in our case, as we can see from 
equation (41), the two-dimensional structure occurs only with a > ct,. 

For the convenience of comparison with the study in [7], we represent ki in the 
following form, using the first equation (30): 

Hence, with C, -+ 0 and K + 1, there follows the result of the study [7]. The depen- 
dence between the observed magnitudes is of interest to experimentalists. Such a 
dependence follows from equation (43), taking into account equations (36) and (37), 

Let us consider two-dimensional structures with ko = 3k,,, + A,. 
As we have seen, two-dimensional structures had not been observed with k, close to 
k ,  /2 and 3k, /2. Now let us consider in more detail the situation for k, close to 3k, 12. 
We assume 

ko = 3k,/2 + Ao, A0 G ko (45) 
In contrast to the case where k, = k ,  + A,, now the second term in equation (18), 
equal to 

E,,AE cos[k,x/2 + Aox + cp(x)l, 

will be rapidly oscillating function because of the presence of the k ,  xj2 term in the 
cos argument. This term should be averaged over the I ,  = 4n/kl period. Naturally, 
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1336 E. D. Belotskii et al. 

it is to be taken into consideration that although the phase cp(x) changes slightly 
during one period within the limits of an infinite system, such a change of the phase 
will be substantial. By averaging, e.g. over the nth period, we have (with AolI 4 1) 

t [,+I)‘’ C O S ( ( ~ Z / ~ ,  + A~)x  + v(x))~x x (Aol, + ~p’(x,)/2~ 

x cos(Aox, + rp(x,)), x, = nl, (46) 

(In the continual approximation, x, + x.) While we can neglect rp‘(x,) in equation (46), 
in the given case with an obvious change of notation a + (2A0/k,) - a, we come again 
to the functional (27). Since 2A,/kl 4 1, a critical field in which two-dimensional 
structures are observed, in the case when ko x qk,  will be the same number of times 
greater than the critical field, with k, x k , .  As can be easily understood, a similar 
situation will also take place with ko x k ,  /2. Consequently, near the rational relation- 
ships 

1 3  
k, 2 ’ 2  
ko - - _ -  

the critical field will be inversely proportional to &, while when k, x k ,  this field 
depended only on the system parameters. This constitutes a principal difference of 
system behaviour near k, x k ,  and 

ko x t k , ,  $k, 

Experimentally, this peculiarity should be revealed in the following way. With 
such a preset voltage of a simulated field A E  that two-dimensional structures occur 
with k, x k , ,  it is always possible to choose a sufficiently small region of the 
wavevector values near k ,  /2 and 3k, /2, inside which an applied field will be less than 
critical. Consequently, in these small regions the two-dimensional structures will not 
occur. A similar picture has been noted in [l]. 

Now let us briefly discuss the possibility of neglecting the cp’(x) derivative in 
equation (46). The first condition of such a neglect will evidently be 

A04 > cp’(x), (47) 

(48) 

which is reduced to 

Aol, % ( 2 a / B ~ ~ ) ” ~  * (1 - ic2)’/*. 

The condition in equation (48) results from the demand of the smallness of 
cp’cos(A,x + cp(x)) as compared to the previous terms: 

a 
B ’  

A, > - (49) 

All of this relates to the case when W, is constant. It is possible to demonstrate that 
within the framework of the set problem, breakdowns in the role system may also take 
place. Actually, despite the possibility of the existence of various physical mechanisms 
leading to breakdown in the roll system, which have been observed experimentally 
even within the framework of our functional (and with the assumption that we leave 
only phase derivatives), we can demonstrate that the breakdowns inevitably occur 
under certain relationships of parameters. 
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Formation of Williams domains 1337 

Accounting for spatial derivatives leads to re-normalization of R,, and with 
sufficiently high values of derivatives in some points of the domains, the difference 
R, - R may tend to zero, which fact indicates a breakdown in these points of the 
domains. Although the derivatives by W, should be successively taken into account 
as well, we believe our evaluations to be correct at last to an order of magnitude. To 
demonstrate this, we return to the functional (20), having substituted the solutions in 
equation (22)  with W, # const, and having retained only phase derivatives we find 

r r  r 
9 = J J dxdy {[Cl(R, - R )  + C,(~,(P)’ + 2C4k;axcp + k;C, + k;C,]&’ 

AE 
EO 

- C1p - * COS(A,X + (v(x))q3 + C2 K4 

In a long wavelength approximation with IC + 1, the solution to q ( X )  is known 

q(x) = n/2 + 2arctg ( exp [ 2 J(  &) (x - lx14)]).  

By substituting this asymptotic value into the Euler equation for the functional (50) 
(the unknown amplitude, W,, is varied), we find that a breakdown occurs when the 
system parameters satisfy 

1 AE 
4p2C3 - CI RCp - COS(A,X + (P(x)) 

EO 

where 

1, 5 Ix(a), lo = IX(clg). 

Changing to the variables w = Wdl2, we write this equation in the form 

w2(w4 + pw2 + qw + r )  = 0, 

where 

(53) 

In the point of roll breakdown, w = 0. We consider the solution to equation (53) near 
r r 0 and, consequently, near the solution w z 0. In this case, we can neglect the 
term w4 in the equation (53), and the resulting equation 

pw2 + qw + r = 0 (54) 
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will have the solutions 

Only the second solution however realizes the minimum of the functional (50). It 
means physically that as the value of 1, decreases, a moment will come when in some 
points, according to the expression of r from equation (53), r = 0 and, consequently, 
either w or W, also tend to zero, which fact indicates breakdown in a roll system. 

Thus, within +he framework of our approach we can explain not only the forma- 
tion of one- and two-dimensional structures but also the presence of periodical 
breakdown in a roll system, which have been observed experimentally [ 11. 
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